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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2307

A THEORETICAL METHOD OF DETERMINING THE CONTROL GEARING
AND TIME LAG NECESSARY FOR A SPECIFIED DAMPING
OF AN ATIRCRAFT EQUIPPED WITH A
CONSTANT -TIME-LAG AUTOPILOT

By Ordway B. Gates, Jr., and Albert A. Schy

SUMMARY

A method is presented for determining the control gearing and time
lag necessary for a specified damping of the motions of an aircraft
equipped with an autopilot having constant-time- ~-lag characteristics.

The method is applied to a typical present-day airplane equipped with an
autopilot which applies rudder control proportional to the yawing angular
acceleration. The types of motion predicted for this airplane-autopilot
system by this method are in very good agreement with the airplane
motions calculated by a step-by-step procedure.

For some values of control gearing there may exist more than one
range of time lag for which the motions of the egssumed aircraft-
autopilot system will have more than a specified amount of damping.

INTRODUCTION

Many present-day alrcraft designed to fly at transonic and super-
sonic speeds have exhibited poor lateral stability characteristics. As
a result, much interest has been shown in automatic stabilization systems
as a means of obtalning satisfactory stability for high-speed flight.

In analyzing the effect of a particular autopilot, the usual practice
has been to determine whether the aircraft-autopilot system is stable
by employing methods such as those presented in reference 1 (frequency-
response analysis) and reference 2 (Nyquist plots). For autopilots
characterized by constant time lag (linear variation of control gearing
and phase lag with frequency) the same information can be obtained by
carrying out an analysis such as that of reference 3. This type of
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information is important in the analysis of an autopilot-aircraft

system but affords little gquantitative indication of the degree

of stability which can be obtained by use of a particular autopilot.
Since one of the purposes of equipping an aircraft with an autopilot is
to improve its stability, the determination of the type of autopilot
frequency response that will result in satisfactory stability appears to
be of greater importance. The degree of stability which can be obtained
by equipping an aircraft with a linear autopilot can be calculated by

the methods of reference 4, but, if an over-all picture is desired of the
variation of stability for different combinations of control gearing and
constant time lag, the calculations become too laborious for practical
application. A method of obtaining this information was discussed very
briefly in the appendix of reference 4, but has been found inadequate

for a comprehensive analysis of autopilot systems which exhibit constant~
control-gearing and constant-time-lag characteristics.

w

The purpose of the present paper, therefore, is to extend the
concept discussed in the appendix of reference 4 and thereby present a
rigorous method of obtaining the combinations of constant control gearing
and constant time lag necessary to provide specified amounts of damping ,
up to the maximum obtainable, to the motions of a linear oscillating
system, with application to the automatic stabilization of aircraft.
The method presented is applicable, in a strict sense, only to control -
systems which exhibit linear frequency-response characteristics, but,
under certain conditions discussed in the paper, the analysis is valid
for systems having a frequency response similar to that of a constant- v
time-lag system over a limited range of frequencies.

Although in this paper the method is applied to the problem of

automatic stabilization of aircraft, it is, in general, applicable to
any linear oscillating system with constant time lag.,

SYMBOLS AND COEFFICIENTS

@ angle of roll, radians

¥ angle of yaw, radians

B' angle of sideslip, radians (v/V)

r yawing angular velocity, radians per second (dW/dt)

W yvawing angular acceleration, radians per second per second .

(a2v/at?)
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Hb

rolling angular velocity, radians per second (dg/dt)
sideslip velocity along lateral axis, feet per second
airspeed, feet per second

mass density of air, slugs per cubic foot

dynamic pressure, pounds per square foot <%QV%>

wing span, feet

wing area, square feet

weight of airplane, pounds

mass of airplane, slugs (W/g); any integer

acceleration due to gravity, feet per second per second

relative-density factor (m/pSb)

inclination of principal longitudinal axis of airplane with
respect to flight path, positive when principal axis is

above flight path at nose, degrees

angle of flight path to horizontal axis, positive in a climb,
degrees

radius of gyration in roll about principal longitudinal axis,
feet

radius of gyration in yaw about principal vertical axis, feet

nondimensional radius of gyration in roll about principal
longitudinal axis (kXO/b)

nondimensional radius of gyration in yaw about principal
vertical axis (kzo/b>

nondimensional radius of gyration in roll about longitudinal

stability axis <\/Kxo2c032n + Kzoesin2n>

nondimensional radius of gyration in yaw about vertical

stability axis <\/K202cosgn + Kxoesin2n>




Kxz

nondimensional product-of-inertia parameter

<(K262 - Kxoe)sin T, COS q)

trim 1ift coefficient (K_CCE_J_>

gS

rolling-moment coefficient <Rolling moment)

gSb

yawing-moment coefficient (Yaw1ng moment)
gShb

Lateral force>
as

lateral-force coefficient (

NACA TN 2307
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time, seconds

nondimensional time parameter based on span (Vt/b)

differential operator <Ji—>
dSb

period of oscillation, seconds

time for amplitude of oscillation to demp to one-half its
original value, seconds

deflection of control surfaces, radians
real part of complex root of characteristic stabllity equation
angular frequency, radians per second

nondimensional angular frequency (309

complex root of characteristic stability equation (a + iwg)
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T time lag between signal for control and its actual motiomn,
seconds

nondimensional time lag (%T)

k amplitude of control-surface oscillation produced by autopilot
in response to oscillation of airplane acceleration

(81«

ve

s autopilot)

2
Ve x

ks = b2

DR2Y

6 phase angle, radians
' EQUATIONS OF MOTION

The nondimensional linearized equations of motion, referred to the
stability axes, are:

Yawing

2“’D(KZQDbE\V + Kyz, Db2¢> = CnBB + %Cnp Dpd + %Cnr Dp¥ + Cngrar (1a)

Rolling

'EHb(KXEDb2¢ + Kyz, Dbg\lf) = CzBB + %Czp Dpd + %CZI‘ DpV¥ + C7'6a6a (1v)

Sideslipping

2up(DpB + Dp V) = Cygh + %CYP Dpd + C1P + %CYI, Dp¥ + (Cp tan 7)¥ (1c)v

The derivatives Cn6a’ Czar, CYSa’ and CYBr have been neglected

in equations (1).

If a constant-time-lag autopilot which applies rudder control pro-
portional to the nth derivative of the yawing displacement is installed
in the airplane, the equation for oy as a function of 8y becomes
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3.,

Px(e0) - DR ¥

Dp"¥(sp - T5) (2)

vwhere the term Dp™(sy - 7,) signifies that the control deflection at

a given instant is proportional the the nth derivative of V¥ which

egisted at a fixed time Tg5 previous to the given instant. The term
&
T

oD,y
constant-time-lag autopilot which applies aileron control proportional

to the nth derivative of the rolling displacement is installed in the
airplane, the equation for & as a function of Sp becomes

is the control—gearing ratio of the autopilot. Similarly, if a

38,
3P

Ba(sp) = DpPf (sb - 7s) (3)

For purposes of i1llustration, assume that the type of autopilot
described by equation (2) is to be investigated. Therefore, tbe value
of 8, given by equation (2) is substituted for B, insgquatlons (%).
The aileron deflection &y is assumed igro. When ¢oe is substi-
tuted for @, Wee P for vy, and Boe P for B in the resultant
equations written in determinant form, A must be a root of the charac-
teristic stability equation

—T
A B s a3 £ DA2 4 B+ keaBe S (AA3 + B2 + 0'A + D) =0 (W)

where A, B, C, D, E, A", B', C', and D' are functions of the mass and
aerodynamic parameters of the airplane. The expressions for A, B, C,
D, and E are given in reference 5, and, for this particular case,

A'

2n. 2
-l Ky Cngr

Bl

1

2
C
(2ube Cyp + ubCzP) ng,.
1 1
or =:<-§CzPCYB + ECYPCZB>Cn6r

D' = CLC

chngr
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The time to damp and the period of the lateral oscillation in seconds
are given by the expressions

_ -0.693 b
et Te W
' (5)
_2nr b
P = 5

where a and g are the real and imaginary parts, respectively, of a
complex root of equation (4). '

ANALYSIS

The following assumptions are made in the derivation of the method
which may be used to determine the combinations of kg and Tg neces-
sary to provide a specified amount of damping of the lateral oscillations
of an automatically stabilized airplane: :

(1) The characteristic stability equation of an airplane equipped
with an autopilot which applies rudder control proportional to the nth
derivative of the yawing displacement which existed at time sy - Tg 1is

given by equation (4); that is, the autopilot 1is assumed to have linear
characteristics.

(2) This stability equation has as one of its roots A= a + iwg.
(This root A represents an oscillatory mode of motion, the time to
damp to one-half amplitude and the period of which are given by equa-

tions (5).)

The stability equation of the airplane-autopilot system (equa~
tion (4)) may be rewritten in the following form:

“Tgh _ A5 + Bl + a3 + DA2 + EA (6)
AR(aa3 + B'AZ + c'A + DY)

kge

If A =a + iwg is substituted in each side of equation (6), the
condition that A be a root of the characteristic stability equation is
that the complex number Aj + iBy obtained from the left-hand side must
be equal to the one obtained from the right-hand side Ap + iBp. The
quantities Aj + 1B} and Ap + iB> may be represented by the expres-
sions Rle1 1 ana Rgeleg, respectively. Therefore, this requirement
is equivalent to saying that Ry = Ro and 67 = 6o if A 1is to be a
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root of equation (4). If X = a + iwg 1s substituted in the left-hand
side of equation (6), the following expression results:
16

T
kge Sa(}os TgWg = 1 sin Tsw%> = Ay + 1By = Rqe

Since the complex number A7 + 1B] is unchenged when its phase angle is
increased by integral multiples of 2n, the following identities exist:

-(Ts)ma

1l

R
1 (ks)me

61 =2m - (Ts)mwB

where m=0, 1,2, . . .. If A =a + iwg; 1is substituted in the

right-hand side of equation (6), the values of R, and 6, can be
calculated numerically. For each value of m, the value of (Ts)
m

necessary to make 6; equal to 6, can be calculated and since a is
a known fixed quentity, the values of (kg) necessary to make Ry
m

equal to Ry can also be determined. For the combinations (-rs)l

and (ks)l, (Ts)2 end (ks)e, .. (Ts)m and (ks)m, therefore,

A =a+ iwg 1is a root of the characteristic stability equation (equa-

S
tion (4)). The parameter m in the preceding equations is necessary

if the analysis is to hold for values of a which represent dampings

less than the natural airplane damping. More specifically, the ranges
of 75 and kg which result in greater stability than the natural

stability of the airplane alone cannot be obtained correctly by
utilizing the methods as presented in reference 4. For example, the
curves presented in figure 10 of reference 4 fail to provide the
important information that, for small values of Tgs the autopilot-

airplane system discussed in that reference 1s less stable than the
airplane alone. In addition, the parameter m is necessary if the

21.

analysis is to hold for values of 7T,>Z2L* These values of Tg must
®g
be included in a theoretical analysis of the problem since, as Tg 18

r 2%

increased by multiples o » the phase relation again exists which

is necessary for the system %o have an oscillatory mode the damping of
which is indicated by a. The analysis of reference 4 considered only

the case of m = 1 and was therefore restricted to values of Ts<:§£

or, in effect, to values less than the natural period of the oscillation.
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For a given value of a corresponding to some desired value of
Tl/e of the lateral oscillation, the analysis may be made throughout
the range of ®g and the required combinations of (kg), and ("s)m
determined for each wg. For each m, therefore, a curve representing
this value of a may then be plotted as a function of (kg)y and (Tg)p-
This family of m curves will divide the kg,Tg plane into regions for
which the lateral oscillations‘will have more or less damping than that
indicated by the value of a belng investigated.

General expressions for (Tg)p and (ks)y for each wg, in terms
of Rp and 6p, are as follows:

2m
(TS)O + 5g—

(Ts)p

I

(kS)OGEKma/wS

(ks)y

where

(ks)o _ Rge(TS)Oa _

Thus, for any value of ws, it 1s necessary only to obtain (TS)O and
(ks)o since, by use of the preceding generating functions, the required
combination of T4 and kg are readily obtained for any integral value
of m.

ILLUSTRATIVE EXAMPLES AND DISCUSSION

gince the purpose of installing an autopilot is to improve the
lateral stability of the airplane, one logical value of a to investi-
gate would be that value which corresponds to the damping of the lateral
oscillation of the airplane without the autopilot installed, hereinafter
referred to as airplane damping. Thus, the curves corresponding to that
value of a would indicate those combinations of kg and 75 for which
the airplane is more stable with a given autopilot than without it. This
value of a may be determined, of course, by solving for the complex
roots of the characteristic stability equation when kg is set equal to
zero. The family of curves obtained for this value of a forms the
boundary between two different types of curves; that is, the curves for
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dampings greater than the airplane damping are of a different shape than
those for dampings less than this value. This change in the damping
curves 1s discussed in detail in a subsequent paragraph.

For purposes of illustrating the present method, the airplane is
assumed to have freedom only in yaw. Several damping curves were calcu-
lated for a typical present-day airplane equipped with an autopilot
sensitive to yawing acceleration for both the three-degree-of-freedom
and the one-degree-of-freedom cases. The results of the calculations,
although not always in quantitative -agreement, indicated that the nature
of the damping curves obtained for both cases was essentially the same
and therefore subsequent discussion is based on the results obtained when
the system was assumed to have freedom only in yaw. '

The mass and aerodynamic characteristics of the typical present-day
airplane are presented in table I. The characteristic stability equa-
tion for the three-degree-of-freedom case was presented previously
(equation (4)), and the characteristic stability equation for the one-
degree-of-freedom case is given by

_TSX .
PUpK A - %cnrx - Cp, = Cpy ks A2 (T

The derivative an is assumed equal to —CnB. The equation used in the

calculations, obtained by rearranging equation (7), is

242 1 :
2up KA = =C, A - C
“Tgh _ HphZ 2 Dr n

v (8)

kqe
C
n6r

As was pointed out in a previous section, the damping curve corre-
sponding to the damping of the airplane oscillatory motion without the
autopilot installed forms the boundary between two characteristically
different types of curves. In order to illustrate the types of curves
which will be encountered, calculations were made for the airplane
damping and for dampings less than and greater than this damping. The
results are shown in figure 1. For the airplane described in table I,
the airplane damping is Tl/g = 2.02 seconds. The values of T4 and kg
obtained from equation (8) have been converted from the nondimensional
time parameter sy to time in seconds. Thus, the curves are plotted as
a function of the dimensional parameters k and T in seconds. Each
point on these curves corresponds to a different frequency wg, which
varies from infinity at the point (7T=0,k=0.062€) to zero as T and k
approach infinity., It is interesting to note that all the damping
curves approach the point (0,0.0628) as wg->w. For this point, the
roots of the characteristic stability equation do not indicate any high-
frequency oscillation; however, for any finite value of 7, the roots of
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this equation will indicate a high—freqﬂency oscillation in addition to
the usual lateral oscillation., For a given value of K, the frequency
of this additional oscillation decreases with increases in 7. Also,

all the damping curves approach a minimum value of k for a value of wg
corresponding to a frequency close to the natural frequency of the air-
plane. In general, frequencies greater than and less than the airplane
natural frequency are separated by the point of minimum k on each of
the damping curves. For this asirplane the natural frequency is approxi-
mately 5 radians per second.

The curves presented in figure 1(a) correspond to Ty/p = The

complete boundary for neutral stability is made up of the curves for
m=0,1, 2,. . . » Unless m is allowed to take on integral values
it is impossible to define correctly the stable region of the k,T plane,
For example, consider the point (k=0.035,7=1.6) in figure 1(a). The
point, according to the curve for m = 1, represents a stable condition,
but since it falls on the unstable side of the m =2 curve, the pre-
sence of unstable oscillatory modes in addition to. the stable oscillation
is indicated and thus this combination of k and 7 would result in an
unstable condition. The true boundary of neutral stability i1s shown as
the solid curve of figure 1(a). Only the curves for m =1, 2, and 3
are shown, The curve for m = O would fall in the region corresponding
to negative values of T and therefore was omitted. From this figure
it is apparent that for some values of k there exist several ranges

of + for which the system will be stable., The width of these ranges
diminishes as m increases and eventually disappears completely. For
this special case of Tl/g = o and a given value of k, the ranges

of T necessary for stability can be calculated analytically by the
methods of reference 3, since the airplane was originally stable. The
results obtained by using this method agree exactly with those of

figure 1(a). The analysis presented in this reference was for a one-
degree-of -freedom system and in appendix A it has been modified to apply
to an airplane-autopilot system with three degrees of freedom, It should
be emphasized that the method of reference 3 is applicable only to the
special case for Tl/2 = o and an originally stable airplane, On the

other hand the method presented in this paper is equally applicable to
originally unstable airplanes, in which cases the Tl/2 = o curves will
have the form of the curves for dampings greater than the original air-
plane damping.

For Tl/2 = 3,50 seconds, the resulting curves for m =0, 1, 2,

and 3 are presented in figure 1(b). The general shape of the curves is
the same as for those of figure 1(a), and the same general conclusions
apply. Only that part of the curve for m = 0 which is in the region
of positive time lags is shown in the figure. The curves for the air-
plane damping, Ti/p = 2.02 seconds, are shown in figure 1(c). For the




|
Y

NACA TN 2307 13

combinations of k and T within the triangular-like regions, which

are formed by the curves for m, m + 1, and k = 0, the oscillatory
motion of the airplane is more stable with the autopilot than without

it. The damping curves for Tl/2 = 1.40 seconds and Tl/2 = 0.70 second
are presented in figures 1(d) and 1(e), respectively, for m =1, 2,

and 3. These curves are quite different from the ones presented for
damping less than the airplane damping. The combinations of k and T
for which the airplane would be more stable than is indicated by the
curves for Ty/2 = 1.4 seconds or T1/2 = 0.70 second, for example,

are enclosed in island-like regions in the stable part of the k,T plane.
A similar region exists for each value of m, but as m is increased
the size of the region diminishes. 1In addition, as Tl/2 is decreased

these looped regions become increasingly smaller for each value of m,
As Ty1/o 1is reduced beyond some finite value these loops will cease to

exist. The value of Tl/2 for which the m = 1 loop disappears

represents the maximum damping obtainable for this airplane by the use

of a specific autopilot. A method of obtaining this maximum damping

for each value of m 1is presented in appendix B, It can be seen from
figure 1(e) that no loops exist for m > 1. This amount of damping,
therefore, can only be obtained for all the oscillatory modes within

the m = 1 loop. This conclusion could have been reached by carrying

out the analysis of appendix B. As a matter of interest, for this parti-
cular autopilot-airplane system, the m = 1 loop ceases to exist for
Tl/2 < 0.35 second.

The regions in the k, T plane, which correspond to the dampings
shown in figure 1, have been combined and are presented in figure 2,
This figure gives an over-all picture of the effects of the specific
autopilot on the lateral stability of the airplane. In order to verify
the results indicated by this figure, airplane motions were calculatgd
for the combinations of k and T identified as points A, B, C, and D.
Step-by-step calculations were made by assuming freedom only in yaw, and
the airplane motions in yaw subsequent to a 5° displacement in yaw for
these combinations of k and 7T are presented in figure 3. Point A
is located within the m = 1 loop corresponding to Tl/2 < 1.40 seconds

and the motion of figure 3(a) checks this prediction. The motion for
point B (fig. 3(b)) is very lightly damped as is indicated by its near-
ness to the zero-damping curve. Point C represents a combination of k
and T for which the airplane is less stable with this autopilot than
without it. Also, as seen from figure 2, the motion for this combina-
tion of k and 7T should indicate two oscillatory modes of different
frequency with approximately the same amount of damping. The motions

of figure 3(c¢) support this prediction since more than one oscillatory
mode is indicated. The combination of k and T for point D is located
within the m = 2 loop, T1/2 € 1.40 seconds. The motion for this combi-

nation (fig. 3(d)) is approximately as heavily damped as that of
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figure 3(a), but because of the larger value of time lag this high
damping is not realized as quickly. It is of significance, however, that
this amount of damping can be obtained for the combinations of k and

T within the m =2, 3, . . . loops as well as for those within the

m = 1 loop. In actual practice the phase lags encountered in conventional
autopilots which can be represented by second-order systems generally do
not exceed 1800 at any frequency and the assumption of constant-time-lag
characteristics usually is valid only within the frequency range where
the autopilot phase lag is less than approximately 900, The time lags
common to the m =2, 3, . . . loops imply phase shifts greater than
ox and thus are beyond the range where the assumption of constant time
lag is usually valid. Two conceivable cases may be mentioned for which
it might be desirable to develop devices with such large time lags.

One is the case of a high-natural-frequency system (not necessarily an
aerodynamic system), for which it might be impractical to obtain the
small lags necessary for the stability of the system with automatic
gtebilization in the m = 1 region. Another case is that of an aero-
dynamic system which is to respond to automatic control in addition to
being automatically stabilized, in which case it might be desirable to
delay the operation of the stabilization device in order to reduce its
effect on the response time of the automatic control.

It should be reemphasized that the preceding analysis was made for
an sirplane equipped with an autopilot having constant time lag. Demping
curves such as those presented in figure 2 therefore apply, in a strict
gense, only to autopilots which have these assumed characteristics. If,
however, & frequency-response analysis of a given autopilot indicates
that the assumption of a constant time lag is valid for only a limited
range of frequencies, the preceding methods can gtill be used to good
adventage. Damping curves such as those of figure 2 can be constructed
and the values of k and 7, which will result in a given amount of
damping of the oscillatory modes of motion, can be determined since for
each point in the k,7 plane there will be certain complex solutions of
the airplane-autopilot characteristic stability equation (equation (.
If the frequencies of the oscillatory modes characteristic of a parti-
cular point in the k,T plane are guch that the autopilot can be made to
exhibit constant-lag characteristics up to and beyond the highest ‘
frequency involved, then the damping of the oscillatory motions for the
airplane-autopilot system will be essentially the same as predicted by
the constant-time-lag analysis. The validity of this statement can be
seen by examination of equation (8). The left-hand side of this equation
is the autopilot frequency-response function Sr/Dbew. Likewlige the
right-hand side of the equation is the airplane frequency-response func-
tion 5r/Db2¢. The necessary and sufficient condition that A = a + ilwg

be & solution of the characteristic equation (equation (7)) is that,

when a + iwg; 1is substituted for M in equation (8), the complex number

obtained from the autopilot frequency-response function sr/DbEW be
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identical with that obtained from the airplane frequency-response func-
tion 5r/Db2W. The frequencies characteristic of any point in the k,T

plene are readily identifieble and, if the frequency-response function
Br/DbQW of an actuel autcopilot can be closely approximated by the ex-

-T A :
pression 555_ = kze B  up to and beyond those frequencies, then the
v

complex roots of the airplane-autopilot characteristic equation must
be essentially the same as those predicted by a constant-time-lag
analysis. )

CONCLUDING REMARKS

A method is presented for determining the control gearing and time
lag necessary for a specified damping of an aircraft equipped with a
constant-time-lag autopilot. The method is applied to a typical present-
day airplane equipped with an autopilot which applies rudder control
proportional to the yawing angular acceleration. The results calculated
for an ailrplane-autopilot system by the method described are in excellent
agreement with the airplane motions calculated by a step-by-step procedure.

The investigation shows that, for some values of control gearing,
there exists more than one range of time lag for which the assumed
aircraft-autopilot system will have a specified amount of demping. The
width of these ranges diminishes with increased time lags, and beyond
some value of lag, these ranges cease to exist.

It should be emphasized that the analysis presented in this paper
is applicable, in a strict sense, only to systems which exhibit constant-
time-lag characteristics; however, under certain conditions discussed
in the paper, a constant-time-lag type of analysis i1s valid for systems
which have constant time lags for only a limited range of frequencies.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., , September 26, 1950
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APPENDIX A

EXTENSION OF ANSOFF'S STABILITY CRITERION TO THE LATERAL

MOTTIONS OF AN ATRPIANE EQUIPPED WITH YAW AUTOPILOTS

Reference 3 analyzes the effects of constant time lag in the feed-
back of a one-degree-of-freedom oscillatory system on the stability of
the oscillation. The analysis shows that, in general, for a given ‘
gearing, ranges of time lag will exist for which the system remains
stable. These ranges are separated from each other by unstable ranges.
The expression for these stable time-lag ranges is obtained in closed
form in terms of the other parameters of the system. It should be
emphasized that the analysis is valid only for a system originally
stable without feedback.

This appendix extends the method of reference 3 to the three degrees
of freedom of lateral motion of an airplane with a yaw autopilot. The
argument and analysis presented in reference 3 are repeated herein only
to the extent necessary to present the modifications of the method and
to emphasize or clarify points. -

The autopilot is assumed to provide a yewing moment proportional
to the yaw displacement or to the nth time derivative of the yaw, with
the moment lagging the disturbance by a constant time . The resulting
nondimensional equations of motion are given by equations (1) and (2),
and the characteristic stability equation of the system is equation (4).
Note that the first five terms of equation (4) are the characteristic
function of the airplane without the autopilot installed. If, therefore,
equation (L4) is divided through by this characteristic function of the
airplane alone, the characteristic equation of the total system is
obtained in the form
A

(A133 + B'22 + C'A + D') NPkge 'S
+ i =1+ W) =0 (A1)

F(A) =1 "
Y + B+ cA3 + DA + Eu

The theory may be given very briefly as follows. The roots of
equation (4) are also the roots of equation (Al) and are the character-
istic roots of the system. In order for the system to be stable, their
real parts must all be negative. In the complex A-plane a closed curve
consisting of the imaginary axis and the infinite semicircle to its
right will enclose all values of A with positive real parts. Then by
a theorem in the theory of functions of a complex variable (see refer-
ence 6), it can be shown that the transformation of this closed curve
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into the complex F-plane will circle the origin in the F-plane once in
a positive direction for each root of F(A) = O enclosed by the curve
in the A-plane and once in the negative direction for each pole. It can
be seen from equation (Al) that the origin of the F-plane corresponds
to the point (-l,Oi) in the W-plane, and, in fact, each curve in the
F-plane is simply displaced unit distance to the left in the W-plane.
If the airplane were originally stable, F(A) would have no poles in
the right half of the A-plane; therefore, the condition that the whole
system have no roots in this right half of the plane (unstable roots)
is simply that W(A) should not enclose the (-1,0i) point in the
W-plane.

One condition for the preceding theorem to apply is that there be
no zeros or poles of F(A) on the boundary curve in the A-plane. It
will be shown subsequently that for n > 2 stability is impossible;
thus, the only autopilots of interest are those where n = 0, 1, and 2,
that is, displacement, velocity, or acceleration autopilots. Now the
zero root of the characteristic equation (4) for n =1 and 2 1is
removed by the division which gives equation (Al); therefore, no diffi-
culty occurs for these two cases. For n = 0, however, equation (Al)
gives a pole for F(A) at A = 0, which is on the boundary curve;
therefore, for n = 0 dividing through by A 1is not convenient. Thus,
for n=20 ‘
(A23 + B2 + ¢'a + D')kge 8™
MY+ B3+ 02 s Dh+ E

F(A) = 2+ W(A) = & + =0 (A2)

'~ Finally, it is shown in reference 3 that, because of the negative
exponential in equations (Al) and (A2), the transform in the W-plane of
the boundary curve of the right half of the A-plane degenerates to simply
the transform of the imaginary axis. Thus, this curve can be obtained
by placing iws for A 1in equations (Al) and (A2) and letting wg
vary from -o to o. Equations (Al) and (A2) become

Fiog) = 1 + W(iwg) = 0 (A3)
for acceleration and velocity autopilots, and
Fing) = dwg + W(ing) = 0 (AL)
for displacement autopilots.
For displacement autopilots, the critical point in fhe W-plane

corresponding to the origin in the F-plane becomes the point -liwg, &
varying point; that is, W(ws) must not enclose the point (0,-iwg).
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Acceleration Autopilots

The expression for W as a function of wg may be obtained for

the acceleration autopilot by use of equations (Al) and (A3). For the
acceleration autopilot, letting a = A'kg, b= B'kg, c = C'ks, and
d = D'kg gives

[(aa)sh' - Cwsg) + i(dws - ms3)]e’i'rs‘“s
(Awsu - Cd)s2 + E) + i(Dws - Bws3)

W(wg) =

or
, 4 > 2 /2
o) = (aa)s - ca)82> + (dws - bws3> ei(-wsTs + ¢) (15)
s) =
(Awsh - Cwg® + E)2 + (Dws - Bws3)2
where
g=6 -6 (A6)
and
dwg - bwgd d - bwg?
fy = —2 5 =
tan 07 w54 ~ C(D52 8.0.)53 . (A78-)
3
tan 6o = Dws - Bos (ATD)

Auosh - Ccns2 + E

The angles 67 and 6y may be obtained from these equations for any
given value of wg since the algebraic sign of the numerator of tan 6
is the algebraic sign of sin 6 and the algebraic sign of the denomi-
nator is that of cos 6. These signs determine the proper quadrant
for 6.

The W(wg) curve cannot encircle the point (-1,0i) in the W-plane
unless |W > 1. Thus, the ranges of g must be found where lw > 1
by setting |W| = 1 and solving for wg. In the following discussion
only the part of the curve for positive wg will be considered inasmuch
as the curve for negative wg is simply the mirror image of the curve
for positive wg 1in the real axis.

An important result can be obtained by considering what happens
to W(wg) as wg-D . The phase angle of W 1is seen to spiral around
the origin whereas
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kstecngr ksCng_

2K 2 ~ 2
2Hb(Kx Kz® - sz) 2HpKz

lim |W| = l%l - (48)

(DS——>00

Thus, W(wg) spirals about a circle of this radius, and it can be seen
that stability is impossible if the 1limit is greater than 1, since the
point (-1,0i) would certainly be enclosed in this case. Therefore,

stability is impossible for n > 2 since in this case  lim [W| = o,

In the cases of interest the limit of equation (A8) is less than 1.
The next step is to find the critical values of wg by setting ]W] =1,
This condition gives a quartic in wsg. If x is substituted for wse,
the critical roots are the positive real roots of the resulting equation

(a2 - 22)x* + (12 - B2 + 2aC - 2ac)x3 + (c2 - c2 + 2BD - obd - 2AE)x2 +
(a2 - D2+ 2CE)x - E2 = 0 (A9)

When there are no positive real roots of equation (A9), the system
is always stable. Moreover, for |%1 < 1, there must always be an even

number of such roots (double roots being counted twice). For the one-
degree-of-freedom case considered in reference 3 this equation was a
quadratic; consequently, there was only one pair of values (wsl,wsg) for

which |W| = 1, and between these values |W| >'1. This condition corre-
sponds to the fact that the frequency-response curve of the system has
only one maximum, In the three-degree-of-freedom case there are four
possible positive real roots, a condition which corresponds to the fact
that the frequency-response curve may have two maximums (see fig. 4(a)).
Since either of these maximums, in case four critical roots exist, may
enclose the point (-l,Oi), each pair of successive roots must be treated
in the same way as the single pair was treated in reference 3, In most
cases equation (A9) will have only two positive real roots. A necessary
condition that there be four positive roots is that equation (A9) have
four sign changes in its coefficients. The necessary and sufficient
conditions for existence of four real roots can be found in most algebra
books {for example, reference T).

Although equation (A9) will usually have only one pair of real
positive roots, for the sake of generality the possibility of two pairs
must be considered. Corresponding to the two pairs of successive roots
(wsl and w52> and (wsl' and wg ' ), where g '> wg,' > wg) > g,
two pairs of values (¢l, ¢2) and (¢l', ¢2') can be obtained from equa-
tions (A6) and (A7). Then, there are two conditions to determine the
stable ranges of time lag: '
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(2m-l)n+¢2<T<(2m+l)ﬂ+¢1

(A10a)
g, Wgq
(em - 1)m + @,° (2m + 1) + @4°
2 << 1 (A10b)
[dV) w,
So 51

For the system to be stable, both of these must be satisfied; that is,
the stable time-lag ranges are those where the ranges in equation (A10a)
and equation (A10b) overlap. Here m =0, 1, 2, . . . . The values

of m -for which the stable ranges exist are given by the condition

(2 Pafosp * (% = Fpliey (Alla)

m <
Eﬂ(wsl - wsg)

or :
B (n + ¢1')w52' + (n - ¢2')msl'

En(wsl' - wsg')

Of course the smaller of these two bounding values 1s actually the
largest m for which stable ranges exist. This value can be used in
the corresponding equation (AlOa) or (AlOb) to find the maximum value
of T for stability.

(A11Db)

m

Velocity Autopilots

The procedure for velocity autopilots is the same as that for
acceleration autopilots, the only difference being that the magnitude
of W(wg) is divided by wg and the phase angle decreased by /2.
The change in phase angle appears in 61, which is now given by

cwg -~ aws3

tan 6] = ————— (Al2)
d - bwg?
Setting IWI equal to 1 now yields, for w32 = X,

A2xH & (BE - a2 - 2AC>x3 + (02 - b2 + 2ac + 2AE - 2BD)x2 +

(D2 - ¢2 + 2bd - ECE)X +E2 - a2 =0 (A13)
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It might be noted that for this case %ig 'w[ = 0, so that no condition
g S

similar to that of equation (A8) arises. However, in this case, [Wl

does not vanish as wg —>0:

2k C14Cn_

(A1lk)
Cn,Cg - czrcnB + (czpan - CanzB)tan ¥

. _la) _
wsliﬁolwl = IE, =

Since VIE! is generally very small, this quantity will generally be
greater than 1. In this case, equation (Al3) will have one or three
critical roots (usually one), as may be seen from figures 4(b) and 4(c).

In the case l%l <1 an even number of critical roots will exist, and

this case is treated exactly as in the case of the acceleration autopilot
by using equations (Al0) and the associated discussion, with equa-
tion (A12) replacing equation (A7a). However, in the more general case

of I%l > 1, a slightly different treatment is needed.

For the usual case of an odd number of critical values of wg, the
lowest value is treated separately. Call this value Wgy. Then, (W] >1
« when wg <wgy, as can be seen in figure 4(b). Since the phase angle
(~wgT + ¢) is a monotonically decreasing function of wg and vanishes
in this case for wg = 0, the first condition for stability becomes

“WgnT + Po > -n, where @o is obtained when wgy 1s used in equa-
tions (Al2), (A7b), and (A6). Thus, the stability condition for the
first maximum of 1WI is the stringent one that

r<Ztf (815)
50

In the case of one root, this is the only condition. For three roots an
additional condition must be satisfied since the second maximum may
enclose the point (-1,01). 1In this case the remaining two roots, with
Wsq < ws2 < Wsq, are paired just as in the acceleration autopilot, except

that equation (Al2) of course replaces (ATa), and equation (AlOa) applies.
Note that both conditions (equations (Al0a) and (Al5)) must be satisfied
for stability, as described in the discussion of the acceleration autopilot.

Displacement Autopilots

In comparing equation (A2) with equation (A1) for n = 1, the W(wg)
- in equation (A4) for displacement autopilots can be seen to be exactly the




22 NACA TN 2307

same as the W(wsg) in equation (A3) for velocity autopilots. The
difference between the two cases arises from the change in the criticsal
point of the W-plane, as pointed out in the paragraph following equa-
tion (A4). Only positive values of wg need be considered, and for
these values the critical point is (0,-iw). Since this point cannot be
enclosed except when lw[ > wg, the critical values of wSE are given
by the positive real roots of IWI2 = ms2, and the critical phase angles

are now —<2m + %)ﬂ rather than -(2m - 1)r.

The equation determining the critical values for x = wsg is

1255 + (82 - 2ac)x* + (2 - 82 + 2aE - 2BD)x3 +

-

(p2 - v2 + 2ac - 2CE)x2 + (E2 - ¢2 + obd)x - 2 = 0 (A16)

This equation gives the intersections of the function |W| with the
straight line with unit slope, as shown in figures 4(d) and k(e). From
these figures the equation is seen always to have an odd number of real
positive roots (double roots being counted twice); and, in particular,
figure 4(e) shows how the maximum of five critical values might occur.

The method of procedure is the same as that given for the velocity
autopilots with an odd number of roots. Equations (A12), (ATb), and
(A6) are used to get @(wg). The first critical frequency ws, gives as
the stability condition in this case that -wgyT + ¢O > -%u Thus, the

first stability condition for this case is apparently the very stringent

one that B
5 + ¢O

T < E— (A17)

(Dso

For three critical values, the next two are paired as before and
give the additional stability condition for 0550 < Osn < Wg1q *

<2m - %)n + @ . T<<2m + (%D)z + 6 (118)
S

Do 1

which replaces equation (Al0a). Equations (A1l7) and (A18) must both be
satisfied for stability.

Finally, for five critical values, an almost impossible case, the
final pair of values (wsg',wgl'> gives a third necessary condition when

used in equation (A18), as described in the discussion of equation (A10D).

N
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APPENDIX B

DETERMINATION OF MAXIMUM DAMPING OBTAINABLE BY USE

OF A SPECIFIC AUTOPILOT

The conditions which must be satisfied if the damping curves are to
have loops are that (Ts), have both a maximum and a minimum value for

some values of wg, say (wg); eand (ws)s, and that (ks)y be a mini-
mum for some value of wg which is between (wg); and (wg)p. (See

fig. 1(d).) The loops will break down when dks)y and Ars)n

dwg dowg
for the same value of wg. The value of a for which these conditions
are satisfied is the maximum damping of the system obtainable by use of
a specific autopilot. A curve representing a damping greater than this
maximum in the kg,7 g plane will have no practical significance, since
for every point on this curve some oscillatory mode with less damping
than the maximum will always exist,

vanish

Now, (ks)p and (Ts)p are defined by the expressions

-

_ (ke)p = Rpe' Sm® |
> (B1)
T - 2m -~ 92
(roly = —5—= ]

where Ro, (7g)p, and 6, are functions of wg and were discussed in

the section entitled "Analysis." Differentiation of equations (Bl)
results in the expressions

ake)y _ . (Ts)pa a (e)ma dRp
e Roe M%KTQmﬂ + e "

d52 2 + 6
Vg ——— -

A7)y S ams T Pmt O
dﬂ)s 0)52

Setting these expressions equal to zero and considering m =1 gives
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dk dar dR:
.__.§ = aR2 .__§ <+ ___g =0
dms d“)s dﬂ)s
S (B2)
dr de
—5 = - —L2 =
T 21 Ap + Wwg g 0
dTg . dRp
Since —2 = 0 is a necessary condition, === must also be equal to
dwg dwg ‘
zero if %§§ is to vanish., The expressions for Ro and 6> are both
S

functions of g, with the quantity a as a parameter. Equations (B2)
should therefore be solved simultaneously in order to determine the
maximum obtainable damping since

-0.693 b
RV

A convenient method for determining the maximum obtainable damping is
as follows: For several values of a for which the loops are known to

be small, determine the values of wg for which %gg = 0. Substitute

drg
these combinations of & and g 1nto the expression EI)E and evaluate
s

the function. A plot may then be made of dTg against a as abscissa,

dwg
and the value of a for which %ﬁi = 0 1is the required solution. As
dR
a check, this value of & should be substituted into aa? = 0 and the
s
corresponding value of g determined. This combination of a and wg,

if a solution, will then satisfy Is - O.

The same analysis is applicable to the loops corresponding to
m=2, 3. ¢« « s Equations (B1) show that Ro and 62 are independent

of m; hence, 252 is also independent of m. The general expression

dw
d(TS)m s

for =0 is (see equations (B2))
S

|
(@]

de
2m-92+d)saﬁ—

Rearranging the equation gives

8

(B3)

2mm = 6o - Wg
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dRp
dwg
mined for a sufficiently wide range of a and substituted into the

right-hand side of equation (B3), the value of a for which loops will
cease to exist for any value of m can be determined., For example, the

Thus, if the combinations of a and wg which satisfy are deter-

m = 1 loops will bresk down when 6o - w ggg = 2x; the m = 2 loops
2 Sda)s )

when this expression equals U4x; and so on. 1In general, the value of a
for which the loops break down decreases as m increases,

The preceding analysis was applied to the m =2 and m = 3 case
for Tj/2 = 0.70 second since these loops were known to have broken

down for this damping (see fig. 1(e)). As was expected, the analysis
verified the fact that the loops did not exist for these values of m
for Tl/z = 0,70 second.
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L}
TABIE I
MASS CHARACTERISTICS AND STABILITY DERIVATIVES OF A
TYPICAL PRESENT-DAY AIRPIANE
W/S, ID/SA Tt v v v v v v e e e e e e e e e e e e e e e e .. 65
S, Sq ft . . . . . . . . . . . . . . . . . . . . . . . . . . . o 130
b, ft L L - L L . . L * L d L L 2 L * . . . . L . . . . L * L . L ‘ 28
P, s1UgS/CU Ft v v v h e e e e e e e e e e e 4 e e e e e .. . 0,00089
v, ft/sec L] L] Ll L . L L o L L] L] L L . L * L . L L] . . L . L . L . 797
7’ deg . * L . L * Ll . L] L L . * L] L L - . L L L L . o . . L L4 . L] O
CL L * L ® . * o L L L * L 2 . - . L L R . L L . L] L L . . . . . L) . 0023
“b L Ll L L * L * . . . . . . . L L[4 * L) L L L L L] L . L L4 . L4 . L 80. 7
KX2 * [ L L) L L . . L] Ll . L L L . L L4 * L L L L L L L L . * . O' 00967

KZ2 L4 L . L L4 . L L L L L L4 L . L4 . . . L] . . * . L L L . . L L O. 0513
KXZ . o . . . - . . . . . . . ° . . . . . . . . . e ] . . e . "O. 001)4'5

Tl) deg . L . . . . L] . . L * L . . L . L) . . L L) . . . L[4 . L L] L . -200
Clp, peI’ I‘adian ® 8 e e & ¢ s e e e e o e o o v o o e s s e e ¢ . -Ooh’o

Clr’ PEr TBAIAN v v ¢ ¢ ¢ 4 4 e e e e o o e e e e s e e e e e .. 0,08
Cooy PET TAAIABN & v & v ¢ ¢ o o o o o o o o o o o o o o o o o o =0,016
Cppr PET TAAIAN o & o o o s 4 s 4 o o e e e e e e e e e e e e e ~0.140
CYp’ Per radian . . o 0 4 e e 0 6 6 e s 0 s 6 s 6 0 0 e 6 e o 6 4 0
Cyp, Per radian o ¢ o o ¢ o ¢ o v 0o o 0 s 0 e e 0 e e 00 e 0. .o 0
CYB’ per radian . . s 6 6 6 o 6 0 6 6 6 s o o 6 o s e s e o e« o o =1,0
CnB’ Per 7Ai8N 4 4 4 0 6 4 4 4 e o e e 6 6 s e s e s e o e o o« 0,25
CZB, Per radian . . . . . 0 4 e e e e 6 e e 0 6 0 e e s e e e o« =013
Cpbr, Per radlan . . . . . e e 4 e 6 6 6 e e e e e e 0 e e o . . =0.163
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Figure 4.- Types of frequency response for IWI showing possible critical
frequencies for acceleration, velocity, and displacement yaw autopilots.
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